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Summary

N

Several mathematical theorems are derived which demonstrate the equivalence of
continuous volume distributions of doublicity, vorticity and source, and show
furthermore that their influence may be expressed purely in terms of continuous

surface distributions of these quantities over the closed boundary of the
volume.

These general theorems may then be particularised to 'sheets' of singularities
distributed over non-closed surfaces; amongst a number of examples, the
special cases of the velocity fields induced by source, vortex and doublet

sheets are considered, which under certain circumstances are equivalent to each
other and reduce to simple line integrals.

These theorems are expected to have some application in aerodynamic problems
involving the interaction between irrotational incompressible flow regions and
regions of more general flow such as those arising in aerodynamic wakes and in

the jet-in-crossflow problem, and to be of assistance in the development of
improved surface singularity techniques. ., «
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1. INTRODUCTION

It is well known that if the potential in a region obeys Laplace's equation
everywhere within that region, then that potential can be expressed entirely
in terms of surface integrals involving the value of the potential and its
normal derivative everywhere on the closed boundaries of that region. This
fact is exploited in practical aerodynamic calculation methods ('panel
methods') which allow the potential and the velocity everywhere on and
outside the surface of a configuration to be determined nominally exactly
by evaluating one or the other of these functions at the configuration
surface, such that the appropriate boundary conditions are satisfied.

However, in cases where the governing equations in the region of interest do
not reduce to Laplace's equation (such as flows which are compressible or
rotational) the expression for the velocity at any point in such a region
involves not only surface integrals but also volume integrals which in
general extend over the entire non-Laplacian volume. Consequently schemes

1 treating such cases involve a significantly greater amount of computation and
currently are restricted to geometries much simpler than those which ‘panel
methods' are able to handle.

Problems in which it is required to compute the flow inside regions where
} volume sources or vorticity may be considered to be present (e.g. compressible
or rotational flow) will not be considered here. In many problems of interest,
however, such regions may be embedded in a flow which is otherwise source- and
vorticity-free; examples include the flow outside a thick wake (and its
'rolled up' core of rotational fluid) behind a lifting wing, or the flow out-
side a jet issuing at some angle into an otherwise irrotational stream.

In such cases it is often required (sometimes as part of an iterative scheme)

to compute the cffect produced in the outer (Laplacian) region by the sources
and/or vorticity used to model these embedded regions. It is shown herein

3 that this external effect may instead be computed from surface distributions

\ over the boundary of these embedded regions, and that in certain special

f cases, when the embedded region may be modelled as an infinitesimally thin

volume (i.e. a sheet) line distributions may be used. The theorems allow the
singularities (vortices, sources, doublets) to be chosen which are computationally
the most convenient for the problem in hand.
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2. BASIC CONVENTIONS AND INFLUENCE EXPRESSIONS

A

In the fOllOVlng, a general vector A denotes the quantity (A, % +A53 + A k)
where ¢, j, are the unit vectors of the cartesian axes x, ¥y, Z. In
particular the vector T denotes the vector drawn from a point Q to a point P.

i.e. ¥ = (x,,—zq)% + (%P-?Q)j‘ + (zp—ze)ﬁ
or 2 = CxP —Z‘Q)" + (}P- %Q)‘l + (Zp '—Z‘Q)z

The operators curlQ(or %), divg (or V,-) and grady (or V, ) denote the usual
vector differential operators, the dlfferentatlons belng deflned with respect
to the coordinates of the point Q. The operator gradp (or ¥, ) implies
differentiation with respect to the coordinates of P.

It can easily be seen in particular that:

W ged, (F) = g () = -G

Usewill be made of the standard vector identities:

(2) div (sA) = K.grads + s divA
(2a) curl (sA) = (grads)xA + s caul B
and

(3) @xC)xD = (B.D)C - (EB)EB

where s denotes a distzibuted scalar function, A a distributed vector
function and B, T and D are general vectors; Gauss'divergence theorem will
also be used:

(1) [ div, A dn = {f A
3

where A is a continuous vector function defined at every point Q within the
arbitrary volume fl and i denotes the outward normal to the surface S bounding (1 .

Consider the effects induced at a point P by an elemental singularity (source,
doublet or elemental vortex filament) located at a point Q; this may be an
element of a continuous line, surface or volume distribution.

The elemental potential df; and velocity dV, induced at P by an elemental
source of strength do- located at Q are given by:

(5) d§, = —=do  and  dV; = grade (d0;) = ;i3 do.

4Ter

The elemental potential d¢, and veloclty d\g 1nduced at P by an elemental

doublet 4u located at @ (with @u ach s Where & is a unit vector along the

doublet axis, the positive direction of the axis being from the 'negative'
to the 'positive' end of the doublet) are given by:

36, = g g () E = _;ﬁ ‘F_::F_
(6) and
W, = o grad (4)) = -2 grad, (T3A)
-.l‘-__
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The elemental velocity d\k induced at P by an elemental vortex filament df
located at Q (the positive direction of the vector dI" being associated with a
clockwise rotation about the filament) is given by:

v A Fxdl

It may be noted by comparing (5) and (7) that the velocity field induced by a

variation, simply by computing the vector cross-product of the source-induced
velocity with the unit vector defining the vorticity direction. The effect
of vorticity distributions of variable direction may simply be constructed by
compounding three different unidirectional vorticity distributions (even
though each of these in isolation may be physically impossible). This
subject is discussed in depth in ref. 1.




3. INTEGRATION OF ELEMENTARY CONTRIBUTIONS

3.1 Distribution of Vorticity on a Closed Surface

3.1.1 Veloeity Induced at an External Point

Fig. 1 (a) Fig. 1 (v

Consider the velocity Vo induced at a point P due to a continuous surface
vorticity distribution of variable denmsity ¥, lying everywhere on the closed
surface 5 of an arbitrary volume ) (see Fig. l (a)); P lies outside this
volume. Since ¥ at any point of the surface must be perpendlcular to the
local surface unit outward normal n, we can write T }Lx‘h . where/u is some
variable vector field function defined at the surface S.

Using (7) the velocity induced at P is given by:
(8) 4nV, = [[(Rxh) « B ds
s

where b is an abbreviation for the variable vector T/r3 (i.e. - grad,t%)L
Now, using (3):

(Bxn)xb = (@.B)A - (R.B)Aa.

Inserting this in (8) and considering only the component in the direction x:

{f[(/l'-g)n,, - (%.E)/u,‘] 45
JIR(EBNA S~ [[(u.B). R d

% VAR

which becomes, using (4):
(9) a2 = f[fdivg [2(aB)]dn - [[[div, [, B4
£ I

the integration extending over all points Q within the volume Jf}.

Now using (2):

divg [% (i.B)] = T.grad (4-B) + (f ) divg <
= 2. 3raah2(/2.75) since divg1 = O

and

divy [/L,I;]

noo
AN
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¥ F
+
T
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1 . . .
since dLVQ‘E' Y?%ﬂ;‘ O for all r # O, i.e. when P lies outside 1.

Substituting these expressions in (9):
(10) 4 V.2 = ,qlf'[i‘-gradq(/lﬁ) - E-g«‘adQ/u,] an.
Expanding the operator gradg gives:

1. grade (.5) = 3 (paby +pty By + b))

(11)

a2

/L,})’)CQ /u-’axq

e
Xg A%q 7%,

Now M is invariant with respect to the position of the point P, so that using
(1) we obtain:

so that (11) becomes:
i.?rad,q(/ﬁ,.?) = 3xv (/a_,b + fby by +/lzb;>

+ P)
+ + by Zfe
by dxq Vg

T Yy 2
Also: b. 543&, = bz + _ﬁ&_ + b a&z
Q/Jl ; xe 5 2%@ z P ] 2o
Inserting these last two equations into (10) and rearranging gives:

LTV, -4 fff[ 7(/“ F) + by (G - gz
v (P - %) +g(§ﬂt 22740

which by inspection is equivalent to:

(12) 4TV -4 = fj[lf—e.[?radp(/z.s:jaa +gf€.[‘[;xauta/7]dﬂ.

If the process following equation (8) is repeated for the components in the
y and z directions, it follows that we finally obtain from (12):

fff_grad,,(/ﬁ.g)dﬂ —ff -5 > curdy iz AL
a n

(13) 41V,




By comparing with equations (6) and (T7) and remembering that b = /e it
can be seen that:

= ffflf-fadp (E.5)dn

is the velocity induced at P by a volume doublet distribution throughout the
volume [f) , of variable density i , (see Fig. 1 (b)), and that

1 —

ﬁfﬂ-z x curlll AN
is the velocity induced at P by a volume vorticity distribution of
variable density ¥ = curlge AL . Since the equations are derived for an
arbitrary volume doublet distribution J and an arbitrary external point P, it
follows that these relationships between the equivalent doublet and vorticity
densities apply in a local sense for any point Q within L or on S, and not
only in an integral sense.

The volume vorticity distribution 7%, is thus everywhere solenoidal since

din Y, = divg curl /L = 0 (i.e. vorticity is neither created nor destroyed

at any point within Jl) It can furthermore easily be shown by constructing

& local cartesian system (%, 75 M) at any point on S that the vorticity flux
»ncurl/u. dgdn entering an elemental area dS =dfdvn from the interior of /1 is
exactly equal to the flux of the surface vort1c1ty leaving the edges of dS .

It follows that the surface vort1c1ty,u.xvtls phy51cally meaningful in isolation
only in the special case curle O; wunless this is the case, the surface
vorticity cannot be replaced by surface doublicity in the manner discussed later.

By =quating the right-hand sides of equations (8) and (13) and rearranging the
terms, we obtain the following theorem:

Theorem 1 "The veloeity induced by a volume distribution of doublets
of arbitrary volume density j& , at a point lying outside that volume,
ts identical to the velocity induced at that point by a volume
distribution of vorticity of volume density ¥, = eurl i throughout that
same volume, together with a surface vorticity dzstrzbution‘? on the
surface of that volume, whose surface density and direction are given
by ¥ =M where Je denotes the local value of i infinitesimally
inside that surface, and n denotes the local outward unit normal to
that surface'.

It may be noted that, if the volume doublet distribution is known, the
velocity induced at an external point may be evaluated explicitly either
directly in terms of the volume doublet distribution or in terms of the
equivalent, volume-plus-surface vorticity distribution. In the special

case where the volume vorticity has a density of zero (i.e. curlfi = 0),

this velocity may be obtained purely from a surface integral. This statement
requires modifying when the point at which the velocity is required lies
inside the volume f] .




3.1.2  Veloeity Induced at an Internal Point

In the case where the p01nt P lies within the volume Jfl the value of 1» approaches
infinity for points Q in the immediate vicinity of P; at P, “&(¥) is no
longer defined, and the steps leading from equation (9) to equation (10) which
assume that Vz( ¥ = 0, are no longer valid. This problem may be
circumvented by constructing a small sphere of radius g about P (its surface
being denoted by Z and its volume by v ) and excluding this sphere from the
region of integration; the point P may then be considered to lie outside
the volume (f1-v), and the above equations are then still applicable for this
volume and the associated surface (S +Z). The equations relating to the complete
volume f) may then be obtained by augmenting the right-hand sides of equations
(10) and (12) by the expression

L;"'::Bt [- I;_Q’/A_, divy b d.QJ
which was zero for the case where P lay outside J1. Now as &£-0 the function
becomes progresswely more uniform within v and in the limit the above expression
may be written - Mox fg ALVQ'E' 4L . By Gauss' theorem (equation (L)) this
then becomes —/iz fo.w d2 with #'the outward unit normal to the
surface . Since#is defined positive : from Q to P (i.e. pointing towards
the centre of this sphere), the quantity b.hA' is equal to -1/g® for all points
Q on Z so that the above surface integral reduces to MT/L, Consequently
equation (13) becomes for a point P inside f):

(1) 4Ty, = g;f—g«rad.(/ﬁ.-'b')dﬂ —fJ{f—sxwer dl + L.

It can thus be seen that for the case where the point P lies inside the
volume fl , the following theorem is obtained:

Theorem la  "The velocity induced by a volume distribution of doublets
of arbitrary volume density A& , at a point which lies within that volume,
ts identical to the veloeity induced at that point by a volume
distribution of vorticity (of volume density ¥,= curl @ throughout that
volume), together with a surface vorticity distribution ¥ on the
surface of that volume, (whose surface density and dwectwn are given
by & =jrexR, where Me denotes the value of & infinitestmally inside
that surface, and A denotes the outward unit normal to that surface),
plus a term which is locally equal to the vector value /u-"

It may be noted that if the volume distribution /& is known, then the

velocity may be evaluated either directly in terms of the volume doublet
distribution or in terms of the equivalent volume-plus-surface vorticity
distribution, augmented by the local term - i . In the special case where

the volume vorticity has a density of zero (i.e. curl/LZ = 0), this

velocity may be obtained purely from a surface integral plus the local term -/T

3.2 Source Distribution on a Closed Surface

Referring again to Fig. la, consider the potential ¢, induced at a point P
due to a continuous surface source distribution of variable density o; on
the closed surface S. Suppose that the scalar function o is expressed
as o /U- ey where/u is again some vector field function defined at the
surface S.




Using (5) the potential induced at P is given by:
(15) 4T, = —fflz—fl ds
which, using (4) may besexpressed:

4 ge = = [[f dive (4) 40
and which, using (2), further reduces to:

it = ([ ok ($)0 - [[f %o an |
or, using (1), to:
a6y 4y = [[f grads (). 7 A0 m divg T dl.
By comparing with equations (6) and (5) it can be seen that

e [[[9de (3)- 7 4 '

is the potential induced at P by a volume doublet distribution of variable
volume density /.7, throughout /] and that

L .ffj L div. @ dn

mtjl'r' QM
is the potential induced at P by a volume source distribution of variable
volume density of = -dtvdfl throughout JL.

It can be seen that none of the above steps precludes the case where P
lies inside fl , i.e. equation (16} is equally valid for points lying inside
or outside f) .

Once again, the equations are valid for an arbitrary volume doublet
distribution and for any point P; consequently the relationships between
the equivalent source and doublet distributions apply in a local sense for
any point Q in the respective distributions, and not only in an integral
sense.

The volume source distribution is everywhere irrotational since

curlgey = curl duni = 0 (i.e. vorticity is neither created nor destroyed
at any point w1th1n n). Furthermore it follows immediately from Gauss'
theorem (equatlun (L)) that the total volume integral of the source
density - le/w is equal and opposite to the total surface integral of the
source density /A‘n

By applying the operator grad, to both sides of equations (15) and (16),
the corresponding equations for the velocity Ve are obtained. By equating
the right-hand sides of these equations and reairanging the terms, the
following theorem is obtained:

Theorem 2  "The potential and velocity induced at any point P by a
volume distribution of doublets of arbitrary volume
densityjl are tdentical to thuse induced at the same
point by a volume distribution of sources of volume
density & = = div i throughout that same volume, together
with a surface source distribution o = jfle. M on the surface
of that volume, where i, denotes the local value of jx
infinitesimally inside that surface, and  denotes the local
outward unit normal to that surface".

—lo-.




Since Theorem 1 (and la) and Theorem 2 are stated for arbitrary volume
doublet distributions, it follows that the velocity field due to any
doublet distribution may be replaced by that due either to the source
distributions of Theorem 2 or to the vorticity distributions of Theorem 1
(plus the local term i for points lying inside the influencing volume).

By rearranging the various effects, the following theorem can be obtained:

Theorem 3  "The veloeity field due to a combined volume distribution
of sources of density (o =div & ) and vorticity of
density (¥, = curlji) throughout a volume JL is identical
to that due to a combined distribution, on the surface N
of that volume, of surface sources of density (og = fle-MN)
and surface vorticity of density ( %; = —exA ),  together
with a local velocity increment equal to the local value of ju
for points which lie inside the volume SL".

3.3 Normal Doublet Distribution on a Closed Surface

Referring again to Fig. la, consider the velocity induced at a point P due
to a continuous surface distribution of doublets, of density Ms » normal to the
closed surface S.

Using (6) and (1) the potential induced at P is given by:

(a7) 4T dp = -ff,u, grady(%)- M dS
g
which by virtue of Gauss' theorem (4), becomes:
(18) 4t @, = —[[[ divg (£ grade (L)) 401
A

where f is interpreted as a scalar function which varies continuously
throughout SL, but which has the scalar value Jhs at the surface S.

Now using (2):
[ i (F o (2) = [[Gracs3) (o) + [T £ W (5 45

By an argument similar to that used in 3.1.2, the last term is equal to
zero for points P which lie outside J1 , and equal to the local value - 4T #
for points within S1.

Thus for points outside f1, {(18) becomes:
1
(19) 4T ¢P = —fff(gradqfw‘-))- (g@%f) d«Q
NrA
whilst for points within f} it becomes:

(19a) 4T, = -fg (grady (%)) -(gradg $) 40+ 4T fo .

By comparing with equation (6) it can be seen that the volume integral in
equations (19) and (19a) is equal to the potential induced at P by a
volume doublet distribution M, , given by my = gradgf ; this doublet
distribution is irrotational since curlggrad,f = O. We thus obtain the
following theorem:

_11_




Theorem 4  '"The potential and velocity induced at any point by an
irrotational volume distribution of doublets of arbitrary
density A&, = grad £ (vhere ¥ is an arbitrary scalar
function in that volume) is identical to that induced by a
surface distribution of normal doublets on the surface of
that volume, given by As= {. R (where {, denotes the value of
£ infinitesimally inside § and A denotes the unit outward
normal to that surface), augmented when P lies inside that
volume, by the loecal values of -{ and of -grad ¥ ,
respectively"”.

By comparing the above Theorem with Theorem la for the case where cur%}Iv is
zero (as above) the following Theorem is obtained:

Theorem &  '"The velocity induced at any point by a continuous surface
distribution of normal doublets/u,ﬁ on any closed surface
18 tdenttical to that induced by a surface vorticity
distribution ¥, on that same surface given by ¥ =(3rad2/u,)xv'{
where N denotes the local unit normal to the surface and
the operator grad, indicates that only surface derivatives
are required (the normal component of grad U contributes
nothing to the vector product with # ).

3.4  General Statement of Equivalent Distributions

By comparing Theorems 2, 4 and 5 in the special case where the volume
doublet distribution A&, throughout the volume fl is such that divg &y =0 and
curlg iy = 0, and is defined by /ZV= grad £, the following general theorem is
obtained:

Theorem 6  "The following distributions produce identical velocity fields:

(i) The arbitrary doublet distribution ji=grad £ such that V¥ = 0
throughout [) ;

(17) The surface source distribution oz =nA.grad # on the closed
surface S of 1, grad f being evaluated infinitesimally inside S;

(ii%) The surface normal doublet distribution & =f% on the closed surface
S of {1, £ being evaluated infinitesimally inside S; for points
Lying inside Sl the velocity due to this j& must be augmented by the
local value of ~ grad £ ;

(iv) The surface vorticity distribution ¥ = grad f = n o, grad £
betng evaluated infinitesimally inside S;  for points lying inside JL
the velocity due to this ¥, must be augmented by the local value of
—grad § ".

Note that the alternative surface distributions may lie on different surfaces
of the volume. For example volume doublicity parallel to the axis of a prisnm
may be replaced by surface source distributions on the end-faces normal to
that axis, or by surface vorticity distributions on the remaining surfaces.

_12—.
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L, APPLICATION TO CERTAIN SIMPLE CASES

Some results will now be derived which are of relevance to surface singularity
methods.

4.1  Doublet Distribution on a non-closed Surface

Consider an arbitrary surface S with continuously varying tangent plane. S

has the perimeter L. Consider the volume f} swept out by displacing every

point of S by a constant distance h in the direction of the normal to the

local tangent plane of S. It is assumed that h is less than the smallest radius
of concave curvature of S so that normals to S do not intersect within J).

The boundary of {1 can then be defined by the displaced surface S' (which also

has continuously varying tangent plane), by the 'closed' edge E, and by the
original surface S.

Consider now the surface £ passing through all points Q¢ which are contained
within this volume at a constant normal distance fh from S (0 < f < 1);
suppose that £ is defined by the equation F,(x,y,z) = O where (x X5¥52 z) are
the cartesian coordinates of a point on thls surface, and that E is defined
by G(x,y,z) = O. At any point Q; the vector N = grod Fyp(x,y,z) deflnes a
vector whlch is locally normal to 3 (and parallel to the unit vector fLat the
point where N intersects S). In general N will not be a unit vector; its
magnitude will vary over % and indeed for points lying along the same line N
but with different values of f.

Suppose no that the above volume JL contains a doublet distribution which at

any point .s defined by My =mN where m is a scalar function which is constant
along any normal to the surface S but is otherwise variable throughout the
vi'ume fl . At some external point P which is sufficiently far removed from [l ,
this volume doublet distribution will produce approximately the same potential _
and veloc1ty as a surface doublet distribution of variable surface den51ty nmhh!n
on some 'mean' surface between S and S', where N is the mean nagnitude of N

along the local normal to S, and fi is the local unit normal to S.

Now, according to Theorem 1, this volume doublet distribution &, will produce
exactly the same velocity at any external point P as a volume vorticity
distribution of density Y = curlqlu.v throughout 2 , together w1th a surface
vorticity of density % = /&,x1\ on the boundaries S, S' and E, A being the
local outward unit normal for each of these surface. Slnce‘;g,ls defined to
be normal to S and S8', the equivalent ‘T on these surfaces is zero. The
equivalent volume vort1c1ty dlstrlbutlon Y, can be written, using equation
(2a):

Y = cu,rLQ/I, = uw(,amﬁ = (?"MQM)XN + moeuwrty N

(5w1uiq,mm) x N

since curly N = curly grad.Q Fe (X,l},z) =0

It may be noted that gradem will have no component in the direction of N
since m is defined to be constant 1n that direction. Also, since h is
constant, we can write (gradg m) = ,\'(grad,z mh) and this vector will be
constant for all points which lie on a particular normal to S. Thus at an
external point sufficiently far removed from fL, the volume vorticity
distribution will produce approximately the same velocity as a surface
vorticity distribution of variable surface density & = (grad, mhi) x 1

on some 'mean' surface; the operator grad, excludes derivatives normal to

...13 -




"

this surfuce; N is again the mean magnitude of N along the local normal
to S, and A the local unit normal to S.

The surface vorticity distribution 7; on the ‘edge’ surface E can be
written:

-Y’ =/sz "ﬁ = CWN&)X‘S; - —:—;("’hchN)ﬁ K')/'\\c

where ﬁhis the local normal to E and m, and N, are the local values of M and N
at the surface E.

At an external point sufficiently far removed from f) this vorticity
distribution on the edge surface E produces approxlmately the same veloc1ty -~ A
as a llne vortfx distribution of variable line density I’ defined by l“ meh N t
where £ = A x n, is the unit vector along the perimeter of the 'mean' surface.

In the limit as h decreases to zero, whilst the function m is increased such
that the function mh ﬁ remains flnlte (/g say), the 'mean' surface becomes
coincident with S and N becomes the vector grad F o (x, 'Y z) pertaining to S.

Consequently the above 'approximate' statements reduce to the following exact
statement:

"The veloeity field induced by a distribution of normal doublets of surface
density }Q on any bounded surface S with contiruously turning tangent
plane, is zdentzcal to that induced by a surface vortzczty dzstrtoutzon

¥ on that same surface, defined by ¥ =grad, Mg xh (vhere 7 1s the loecal
unit normal to S), together with a line vortex I along the perzmeter Lof S,
dbf%ned by M= =Mt where Meis the magnitude of /g at that perimeter,
and € is the unit veector along L such that the vector t:x/% points away
from S ",

This statement forms an extension to Theorem 5, which was derived for a closed
surface only.

Note that the above statement has been derived for any general surface S with
continuously turning tangent plane; however, it can be seen that it is also
valid for the case of surfaces containing lines at which the tangent plane is
discontinuous, provided that the magnitude of the doublet density is
continuous across such a line; similarly the perimeter L need not form a
line with continuously turning tangent.

In the special case of surface doublicity normal to S and of uniform density M

over S, the equivalent surface vorticity density is zero (since grad, us = 0)

so that this doublet distribution may be replaced by the concentrated edge vortex
f =/4€ alone, this line vortex being of constant line density. Conversely,

it can be seen that a constant-strength line vortex along any arbitrary closed

contour produces a velocity field identical to that produced by a uniform

normal doublet distribution on any arbitrary surface having that contour as

perimeter.

It is also worth noting that a surface con%aining doublicity whose axis is
everyvhere tangential to that surface and of den51ty/4 is equlvalent by a

together with a 11ne source of density o; =,u»? where § denotes the local
unit normal to the perimeter of S, lying in the tangent plane to S at that
perimeter and orientated away from S.
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In the special case of surface doublicity having its axis everywhere tangential to S
and unidirectional and its density a  uniform over S, the equivalent

surface source density is zero, so that this doublet distribution may be
replaced by a concentrated edge source of variable line density o, =,jZ.s.
Advantage will be taken of this fact in section L.2.

L.,2 Velocity Induced by a Uniform Source Distribution on a Planar Polygon

Consider a planar polygon S carrying a tangential surface doublet
distribution it which is unidirectional and which has the uniform density K.
Suppose that a cartesian coordinate system (x,y,z) is defined such that the
polygon lies in z = O and that the x axis is parallel to the axis of the
doublicity. Thus we can write d = K. As indicated in section 4.1, this
doublet distribution produces the same potential and velocity field as a
concentrated line source of density (K5.1) along the edges of the polygon.
On each straight edge of the polygon, the vector 8 is constant, so that the
equivalent line source along that edge is uniform in density.

It can be seen by comparing equations (5) and (6) that the potential induced
at any point by the doublet distribution K¥ on S is the same as the negative
of the x-component of the velocity induced at that point by a source
distribution of uniform density K on S.

It follows that the x—component of the velocity induced at any point by a

uniform surface source distribution of density K on S is identical to the sum of
the potentials induced at that point by a line source along each edge of the
polygon of density -K5.1 (constant al-ng each edge). Similarly the y-component
can be obteined from the sum of the potentials due to line sources of density -K§.
These potentials are obtained very simply by integrating the elemental expression
given in equation (5).

The z-component of the velocity may be derived by considering the potential
due to a uniform coublet distribution defined by & = KK (i.e. doublets with
axes normal to the plane S). In this case the equivalent system consists of
a line vortex of constant density K on each edge of the polygon; the
potential at P due to this closed ring vortex may be obtained by integrating
(from infinity to the point P, with respect to z) the z-component of the
velocity induced by this vortex. This latter function is obtained by
integrating equation (7), (or alternatively from the velocity induced by a

It can thus be seen that the velocity induced by a uniform surface source
distribution on a plane polygon may be obtained purely from line integrals
evaluated along the edges of that polygon; this fact is utilised in
'panel methods' which employ such source distributions. Similar arguments
may be used to simplify the integrals required in higher-order methods
employing non-uniform source distributions or non-planar panels.
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L.3 Source distribution on the Surface of a Wedge

Consider the volume formed by rotating the rectangle ABCD through an angle «&
about the z axis which is parallel to AB and a distance v, from i:. Points
within this wedge will be defined in terms of the cylindrical polar coord-
inates (r, 8 ,z)

Suppose that the volume contains a doublet distribution s of volume density r
where u, is constant, the axis of each elemental doublet being normal to the
plane containing itself and Oz (with the positive end uppermost). It can

easily be shown that both curl}Z and div}i are zero throughout the volume.

Using Theorem 1, the volume doublet distribution produces the same external
velocity as a surface vorticity distribution ¥ on the surfaces of that
volume, described by ¥ = /7.:?1 (the volume vorticity has zero density since
curl@ = 0). Since_the doublicity is locally normal to the rectangular
faces, the value of ¥; on those faces is zero, and we are left with vorticity
which has surface density /a/r on the remaining faces.

On the surface S, this vorticity vector points in the direction of the z axis
whereas on S, it points in the opposite direction, on S, it points radially
away from the z axis, and on S; radially towards it. In the limit as r — 0,
the surface vorticity distribution on S, , of density A/r, , distributed
over an arc length of o, , produces the same velocity field as a line vortex
of line density o«U, 5 along the line AB which now lies on the z axis.

Using Theorem 2, on the other hand, the volume doublet distribution produces
the same external velocity as a surface source distribution of on the surfaces
of that volume, of surface density o = jI.ﬁ (the volume source density is
zero since div}I = 0). This surface source density is zero except on the

two rectangular plane faces, on which it has the variable magnitude Ab/r.

The source density is positive on the upper surface and negative on the lower
surface.

Considering the case where ABCD is of indefinite extent and r, = O, so that
the volume corresponds to an infinite wedge of included angle o« , it can be
seen that the velocity field induced outside the wedge by a line vortex of

density I' along its ridge corresponds to that induced by surface source and
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sink distributions on its two faces, of surface density o = M/&+ ; this
density clearly approaches infinity near the ridge (i.e. as r -» Q).

By adopting the results derived in section U.l, the line vortex may be
replaced by a uniform surface distribution of normal doublets over any
indefinitely large surface which terminates at the ridge of the wedge.

These results (or modified versions of them, using line vortices which are
not of constant strength, or surfaces more complex than an infinite wedge)
are of relevance in problems where wakes, modelled by doublet sheets, arise
from wing trailing edges or from smooth surfaces (wedge angle « =TI ) which
are modelled by surface source distributions.

4.4  Modelling of Flow Past an Infinite Circular Cylinder; Jets

/ Vs
- ! \ ~
Uo— v

\ l T

<\ ’

\ s’
N M=2TarU,
solid cylinder (a) 2-D Doublet

It is well known that the potential flow outside a solid 2-D circular __
cylinder of radius a installed perpendicular to a uniform free stream U,
can be modelled by the interaction between [, and a 2-D line doublet of
line density 2Ma?U, ,_the doublet axis being opposite in d1rect10n to Ue
(as sketched above); U, is assumed parallelto the x axis with x = 0 at the
centre of the cylinder.

It is also easy to demonstrate that the cylinder may be replaced by a surface
source distribution of surface density o; =-2U, cos 9 :

=-2U,Cos B

Sur face sources

By Theorem 6 it can then be seen that this source distribution will induce the
same external velocity as a volume doublet distribution given by

/lv = grad (-2U, x) = ~ 2U, %, i.e. a uniform volume distribution of doublets
with the doublet axis pointing in the ~x direction:

- e & - A
—_ - & & o & /uv= -2Uqs 1
Y 3 q-o-t-o—q—e-\y
- & ¢le ¢ x
- — G — o
- o
- | o
(¢) volume doublicity
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This volume doublet distribution is also equivalent to either a surface
distribution of vorticity 4 = 2U_ sin @ or of normal doublets of surface
density /{,= -2U_ a cos 9 :

YS=ZU‘$M9 - Mg=-2Upacos6

+ ¥

N

(&) Surface vorticity (e) Surface normal doublets.

In this special case, the volume doublet distribution (c) is equivalent to
either any one of the surface distributions (b, d, e) or the line
distribution (a).

Similar arguments may be extended to cases in which the cylinder is not 'solid!
or 'straight' or 'circular'; such cases arise in the modelling of jets
issuing obliquely into a uniform stream. Such jets take up a curved shape
along their axis, and have a non-circular cross-section; fluid is entrained
into the jet through its boundary; the inside of the jet contains a pair of
contra-rotating vortices.

The optimum modelling of this jet is a current subject of research and will
not be considered in detail here, but it is worth noting that the equivalent
representations of Theorem 6 may allow certain of the models under development
to be considerably reduced in terms of their computational requirement.
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s CONCLUSIONS

Certain theorems have been derived which state the equivalence of particular
line, surface and volume distributions of sources, doublets and vorticity.
These theorems allow the influence of singularity distributions employed, for
example, in 'panel methods', to be expressed in terms of the influence of more
elementary distributions. It is possible that these results will be of some
value in the computation of compressible and/or viscous flows and in the
modelling of non-linear problems involving, for example, thick wakes or

lifting jets.
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